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Abstract
Computer mouse tracking offers a simple and cost-efficient way to gather continuous behavioral data and has mostly been
utilized in psychological science to study cognitive processes. The present study extends the potential applicability of computer
mouse tracking and investigates the feasibility of using computer mouse tracking for stress measurement. Drawing on first
empirical results and theoretical considerations, we hypothesized that stress affects sensorimotor processes involved in mouse
usage. To explore the relationship between stress and computer mouse usage, we conducted a between-participant field exper-
iment in which N = 994 participants worked on four mouse tasks in a high-stress or low-stress condition. In the manipulation
check, participants reported different stress levels between the two conditions. However, frequentist and machine learning data
analysis approaches did not reveal a clear and systematic relationship between mouse usage and stress. These findings challenge
the feasibility of using straightforward computer mouse tracking for generalized stress measurement.
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The advancing availability of sensors that capture dynamic
and real-time physiological or behavioral data in everyday life
offers great potential for psychological science (Bauer et al.,
2020; Salas et al., 2017). In the advent of technologies such as
smartwatches and fitness trackers, the computer mouse as a
long-standing, ubiquitous sensor has largely been overlooked,
although it captures dynamic data about human behavior with
high temporal resolution (Hehman et al., 2015). In recent
years, researchers have successfully started to utilize the po-
tential of the computer mouse to study cognitive processes
(Freeman, 2018). The present work focuses on the feasibility
of using the computer mouse for stress measurement. Apart
from the intuitive assumption that affective states such as
stress or fatigue influence the way one uses the computer
mouse, empirical research on the topic is sparse. We try to
advance the field by (1) summarizing the state of the art, (2)
reporting empirical evidence from a large-scale experiment,
and (3) providing our material and code as guidance on how

one might work with mouse usage data in the context of affect
measurement (https://doi.org/10.5281/zenodo.4004776).

Theory

Affective computing and psychological science

The research field of affective computing has been the main
driver for sensor-based affective state measurement. Affective
computing refers to the interdisciplinary study and develop-
ment of computer systems that can recognize, interpret, pro-
cess, and simulate human affects (Picard, 2014). Behavioral or
physiological data captured by sensors such as a camera or an
electrocardiogram (ECG) are the basis for an “affective com-
puter” (for a review see Calvo & D’Mello, 2010). Similar to
affect recognition in humans, the data represent cues about the
affective state of the interaction partner, which the computer
must “learn” to interpret and then react to appropriately. From
a psychological point of view, affective computing not only
represents a fascinating application of psychological knowl-
edge; the developments in affective computing also offer po-
tential for psychological science itself. Particularly, sensors
that continuously record data about behavioral actions and
cognitive, physiological, or affective states are powerful tools
for the fine-grained and dynamic study of psychological
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phenomena (Adjerid & Kelley, 2018; Salas et al., 2017). In
such a way, both research areas strengthen each other recip-
rocally. Affective computing provides the methodology to
gather and analyze data about affective states, while psycho-
logical research provides the theoretical foundation about af-
fective states and therefore fosters a more precise applicability
of the methods.

This synergy is especially noticeable in stress research.
Stress is an omnipresent characteristic of contemporary life
in western societies, with an increasing prevalence
(American Psychological Association, 2018). Many individ-
uals in today's world are confronted with a high number of
emotional and cognitive demands (Grönlund, 2007), whose
accumulation can lead to chronic stress if the individual is
not able to adequately cope with or recover from the demand-
ing episodes (McEwen & Seeman, 2003). Chronic stress is
considered a threat to physical and mental health, imposing
immense costs on individuals and society at large (Hassard
et al., 2018; Scott et al., 2018). Consequently, the develop-
ment of novel countermeasures is of obvious importance.
Using sensor data to unobtrusively monitor behavioral or
physiological processes associated with the stress reaction
represents a potentially innovative diagnostic tool for stress
measurement that allows delivering preemptive and just-in-
time interventions (Alberdi et al., 2016). As stress is a com-
plex psychophysiological phenomenon (De Kloet et al., 2005;
McEwen, 2000), capturing dynamic and fine-grained sensor
data related to stress offers an exciting methodological avenue
for its deeper understanding and a more precise disclosure
about the relationship between acute stressful episodes and
chronic stress (Bliese et al., 2017). The need for a better com-
prehension of stress also shows in the lack of a uniform def-
inition (McEwen, 2000). In the present paper, we define stress
as a state of negative tension (i.e., strain reaction) resulting
from a situation that is perceived as threatening and expected
to exceed one’s coping resources (cf. Zapf & Semmer, 2004).

The computer mouse as a stress detector

Computer mouse tracking represents a behavioral sensor-
based stress measurement approach that has largely been
overlooked in affective computing research, although it offers
a potentially exciting addition to established stress measure-
ment approaches (for reviews on sensor-based stress measure-
ment approaches in affective computing, see Alberdi et al.,
2016; Can et al., 2019). The major advantage of the computer
mouse is that it represents a ubiquitous sensor that is integrat-
ed in everyday life and allows for continuous data collection
without the need for sophisticated equipment and without re-
quiring the user to change their customary behavior or habits.
For this reason, the computer mouse is an ideal candidate for
an objective, cheap, convenient, and unobtrusive

measurement instrument in settings where computers are fre-
quently used (e.g., the office or research laboratories).

Drawing on these benefits, in cognitive science, computer
mouse tracking has become a popular research method in a
wide range of applications (for reviews see Freeman, 2018;
Stillman et al., 2018). Its promise is provision of fine-grained
temporal data, which helps to reveal the dynamics and micro-
structure of cognitive processes in real-time (Freeman, 2018).
In a typical experimental setup, participants are presented with
several options on a computer screen and have to use the
computer mouse to navigate to and click on one option based
on a given rule. The resulting mouse trajectories during the
task carry information about the cognitive processes involved
in the decision-making process (Freeman, 2018). For exam-
ple, in self-control research, the mouse trajectories of partici-
pants with higher levels of self-control revealed a reduced
tendency to navigate towards an unhealthy food option when
having to choose a healthy over an unhealthy food option
(Stillman et al., 2017). Such findings let researchers conclude
that mouse trajectories reflect a continuous decision making
process (continuity of mind hypothesis, Spivey, 2008), al-
though reanalysis of existing mouse trajectory studies with a
novel cluster analysis approach challenge some of the conclu-
sions of previous research (Wulff et al., 2019). To this effect,
mouse tracking continues to facilitate theoretical advance-
ments in the understanding of cognitive processes. Software
to apply mouse tracking in cognitive science is freely available
(Freeman & Ambady, 2010; Kieslich & Henninger, 2017).

In affective computing, Zimmermann et al. first described
the potential of using the computer mouse for affective state
measurement in 2003. Empirical evidence on the topic, how-
ever, is sparse. Most studies are reports about pilot projects
that show mixed evidence about a relationship between com-
puter mouse usage and different affective states without a
clear indication of a systematic pattern (cf. Grimes et al.,
2013; Grimes & Valacich, 2015; Hernandez et al., 2014;
Kaklauskas et al., 2011; Macaulay, 2004; Salmeron-Majadas
et al., 2014; Zimmermann, 2008). Yamauchi and Xiao (2018)
also pointed out the small sample sizes and methodological
shortcomings of most studies.

There are only a few comprehensive studies. Hibbeln et al.
(2017) showed that the participants’mouse speed and traveled
mouse distance were related to their self-rated (negative) va-
lence in three separate experiments (total N = 271). Each ex-
periment used a different task and design: (1) solving a puzzle
after an unfair or fair intelligence test (between-groups de-
sign), (2) ordering an item in an online-shop with loading
delays or without loading delays (between-groups design),
and (3) using a car/computer configurator (correlative design).
Yamauchi and Xiao (2018) conducted four experiments (total
N = 897) that all used a decision-making task in which partic-
ipants had to select one of two geometrical figures, which that
was most similar to a third figure. In each experiment, the
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authors used a different emotion manipulation and/or collect-
ed different self-reported emotional states. The results re-
vealed that mouse usage (operationalized as the distance from
an ideal line and the number of directional changes) was cor-
related to some of the emotional states measured in each ex-
periment, but the correlations were not entirely consistent
across the experiments. In two similar experiments (total N
= 355), Yamauchi et al. (2019) demonstrated that viewing
emotional pictures affected mouse usage (measured as the
distance from an ideal line and the area under the curve as
spatial mouse features and the peak velocity and acceleration
of the mouse as temporal features). Pimenta et al. (2016) col-
lected ten different mouse usage features (e.g., speed, acceler-
ation, time between two mouse clicks, distance between two
mouse clicks) of 24 participants during classwork in a com-
puter laboratory to predict the self-rated fatigue level at 81%
accuracy.

Few studies focused on stress, specifically. Freihaut and
Göritz (2021) conducted a within-subjects laboratory experi-
ment (N = 53) and did not find systematic differences in 24
mouse usage parameters (e.g., average mouse speed, total
mouse distance) during four different mouse usage tasks be-
tween a high- and low-stress condition. Sun et al. (2014) also
conducted a within-subjects laboratory experiment (N = 49)
and found differences in mouse usage operationalized as
damping frequency and damping ratio (i.e., measures for mus-
cle stiffness) between a high- and low-stress condition, al-
though there was no difference in physiological arousal be-
tween the conditions. In another laboratory study (N = 18),
Kowatsch et al. (2017a) showed that mouse speed and devia-
tion from an ideal line differed between a training and test trial
in a high-stress but not in a low-stress condition. The same
authors (2017b) collected mouse speed as well as valence and
arousal ratings of office workers (N = 62) during their every-
day computer usage in a field study that spanned several days.
There was no correlation between mouse speed, on the one
hand, and valence or arousal on the other hand, but a correla-
tion was found with a combined valence-arousal score.

In sum, the empirical evidence tentatively points towards a
relationship between mouse usage and affective states, but
remains blurry. To add to the uncertainty, the high number
of preliminary studies without follow-up might indicate some
degree of publication bias. Importantly, the presented studies
used different data preprocessing steps, extracted different
mouse usage features, collected the data during different tasks,
and analyzed the data using different procedures. This large
number of methodological degrees of freedom increases the
likelihood of finding (and reporting) unreliable outcomes, es-
pecially if exploratory data analytical principles are violated
(e.g., not validating the findings on an independent dataset;
Kuhn & Johnson, 2013). Taken together, this stresses the im-
portance of tying the research to a theoretical framework on
the one hand, and the disclosure of the data and data analytical

procedures on the other hand. To the best of our knowledge,
none of the aforementioned studies disclosed their data and
data analyses, and only some provided a theoretical back-
ground (cf., Hibbeln et al., 2017; Yamauchi & Xiao, 2018).

Theory linking stress to computer mouse usage

Navigating the mouse to execute a task on the computer is a
goal-directed sensorimotor action. Research on motor control
suggests that the underlying processes in sensorimotor actions
are complex (Gallivan et al., 2018), and some researchers argue
that motor control is the main reason for the existence of the
brain (Wolpert, 2011). A goal-directed reaching movement,
such as steering the mouse cursor to a button and clicking on
it, involves the succession of multiple processes governed by
different feedback and regulation mechanisms (i.e., planning
the movement, making an initial movement impulse towards
the target, adjusting the movement impulse to reach the target)
and requires balancing of demands for speed, accuracy, and
energy costs of the resulting movement (multiple process
model, see Elliott et al., 2010, 2017). Although theoretical
models of motor movement have improved over time, it re-
mains a fundamental challenge to better uncover associated
sensorimotor and cognitive processes as well as their interplay
(Elliott et al., 2017). A lack of theory to predict the effect of
stress—being a complex psychophysiological phenomenon
itself—on motor control therefore comes as no surprise.

In their theoretical reasoning, Hibbeln et al. (2017) and
Yamauchi and Xiao (2018) point out the potential role of
working memory and attention on the planning and execution
of goal-directed actions (Gallivan et al., 2016; Mattek et al.,
2016; Welsh, 2011; Xiao & Yamauchi, 2017) and affective
states’ interference with them (Domínguez-Borràs &
Vuilleumier, 2013; Eysenck et al., 2007). Similarly, stress is
known to have a detrimental impact on cognitive functions
(Arnsten, 2009) such as working memory (Oei et al., 2006;
Qin et al., 2009; Schoofs et al., 2008), attentional control
(Sänger et al., 2014), selective attention (Elling et al., 2011),
and cognitive control (Plessow et al., 2012).

Neurological and biomechanical research, too, support the
idea that affective states and especially stress influence com-
puter mouse usage (Hibbeln et al., 2017). Exposure to stress-
ful or emotional stimuli increased corticospinal excitability
(Coelho et al., 2010), motor evoked potentials and muscle
activity (Finsen et al., 2001; Laursen et al., 2002; Lundberg
et al., 1994), facilitated force production (Coombes et al.,
2008; Naugle et al., 2012) and influenced motor performance
(Tanaka et al., 2012). Visser et al. (2004) found increased
muscle activity and force extension on the computer mouse
as well as changes in task performance and mouse usage be-
havior in high versus low mentally demanding tasks. Muscle
activity has also been used for stress measurement in affective
computing research (Greene et al., 2016). In their theory of
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stress and human motor performance, van Gemmert and van
Galen (1997) argue that stress both activates the motor system
and enhances neuromotor noise, which can affect task perfor-
mance. They provide support for their hypothesis in multiple
studies (e.g., van Galen et al., 2002; van Galen & van
Huygevoort, 2000; van Gemmert & van Galen, 1997). In a
review of 31 studies, Staal (2004) concluded that stress im-
pairs motor performance, with fine motor skills being at great-
er risk of impairment.

In sum, both theoretical considerations and empirical find-
ings point towards a relationship between mouse usage and
stress. However, with regard to the complex underlying pro-
cesses and the inconclusive evidence, it seems premature to
postulate concrete hypotheses about causal relationships be-
tween stress or other affective states and specific mouse usage
parameters. Similar to Yamauchi and Xiao (2018), the present
study therefore follows an exploratory approach. The goal of
the present study was to systematically search for meaningful
empirical evidence in favor of a relationship between stress
and mouse usage. Such information may then provide the
starting point to theory advancement and may sharpen the
understanding of the underlying processes. To explore the
relationship between mouse usage and stress, we conducted
a web-based experiment that included four prototypical mouse
usage tasks. The online setting is a unique characteristic of the
present study, with the exception of one of the three experi-
ments by Hibbeln et al., 2017. Capturing mouse usage in the
participants’ natural environment with their own hardware
strengthens the study’s external validity and allows for a better
judgement of the practicability of the measurement approach,
while the experimental design preserves much of the study’s
internal validity.

Method

Participants

Participants were recruited via WisoPanel, an online access
panel comprising research participants with demographic
characteristics that resemble the German population (Göritz,
2009; Göritz, 2014). All 14,343 panel members received an
invitation by e-mail that included a link to the study. The link
was opened by 1,941 participants (response rate: 15.65%) of
which 1,091 completed the study in exchange for a remuner-
ation of 1 Euro (retention rate: 56.21%). We removed 97
participants (8.89%) because they showed signs of careless
responding or technical difficulties (see code for further de-
tails) resulting in a final sample of N = 994 (mean age = 54.4,
SD = 13.3; 515 women, 479 men). The study’s requirements
included the use of a physical computer mouse, a minimum
display resolution of 950 × 600 and a modern web browser.
As far as technologically possible, we checked the

requirements before the start of the study, and filtered out
and informed the participant in the case of a violation. The
median study duration was 21 min.

Design

The experiment had a between-subjects design and consisted
of two stages. In the first stage (baseline stage), all participants
had to run through four different mouse tasks once for practice
and to capture a baseline. In the second stage (application
stage), participants were randomly assigned to work on the
practiced mouse tasks in either a high-stress (n = 480) or
low-stress (n = 514) condition. The experiment was pro-
grammed as a single page web application with the
JavaScript framework react.js and Firebase as a backend.
The content on the web page was horizontally and vertically
centered and had a fixed size.

Stress manipulation

The aim of the stress manipulation was to create a constantly
high (versus low) stress level during all mouse tasks in the
high-stress (versus low-stress) condition. In line with our
stress definition, we confronted participants with a situation
they perceived as threatening (versus neutral) and that
exceeded (versus mildly challenged) their cognitive resources:
We let participants work on a hard (versus easy) stress manip-
ulation task before each mouse task and used a threatening
(versus neutral) framing.

Stress manipulation task

We used a self-developed counting task (Fig. 1) for manip-
ulating stress. Although there exist various stress manipu-
lation tasks (for an overview, see Ferreira, 2019), we felt
that none fully met this study’s requirements: the task must
be executable in an online setting, must be amenable to be
presented multiple times, must be intuitive and easy to
understand, must have an adequate control condition, and

Fig. 1 Screenshot of the counting task
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must not require any mouse usage. The counting task is a
standardized task in which participants are shown succes-
sive screens with a varying number of three similar geo-
metrical shapes (i.e., square, horizontal hexagon, vertical
hexagon) and are instructed to count only the squares. The
stress manipulation task consisted of seven successive
counting trials with a duration of 5 s each. A loading bar
visualized the remaining time in each trial. There was a
delay of 1,250 ms between trials and a fixation cross,
which was shown for 750 ms, indicated the start of a new
trial. The mouse cursor was invisible during the entire task.
At the end of the task, participants had 10 s to type the
number of squares they had counted during the task into
an input field. The two conditions differed in the number of
presented squares and distractors. In the high-stress condi-
tion, participants saw a total of 287 squares and 798
distractors. In the low-stress condition, participants saw
115 squares and 319 distractors. We chose the numbers
to create a balanced task difficulty that was slightly too
hard but not impossible for most participants in the high-
stress condition versus easy to manage but not too trivial in
the low-stress condition.

Framing

Besides the stress manipulation task, the conditions differed in
the announced purpose. In the high-stress condition, partici-
pants were told that the ensuing sequence of tasks amounts to
a performance test that measures some facet of intelligence
(i.e., threat framing). In the low-stress condition, participants
were told that the ensuing sequence of tasks is an application
of the mouse tasks they had already practiced at the beginning
and that would teach them skills for working on computerized
tasks more generally (neutral framing). The framing was to
add a social-evaluative element to the cognitive load element
of the counting task as social-evaluative threat has shown to
elicit a strong psychobiological stress response in the labora-
tory (Dickerson & Kemeny, 2004). In both conditions, partic-
ipants were promised feedback on their performance and were
asked to work on all tasks as fast and as accurately as possible.
The word count in the framing was identical in both
conditions.

Mouse tasks

We created four mouse tasks to capture different prototypical
goal-directed mouse usage actions (Sun et al., 2014). All tasks
were identical in the baseline stage and application stage. The
mouse tasks were also identical in the high-stress and low-
stress condition to prevent that task-related differences con-
found potential effects of stress on mouse usage.

Point-and-click task

In the point-and-click tasks (Fig. 2), participants had to
click on 17 circles, which successively appeared on differ-
ent positions inside a playing field. A counter above the
playing field showed the remaining number of circles to
click on.

Drag-and-drop task

In the drag-and-drop task (Fig. 3), participants had to drag
and drop 12 circles from the center of the playing field
into a squared target box that successively appeared in
one of the corners of the playing field. If the circle was
dropped outside of the target box or dragged outside of
the playing field, its position was reset to the center. The
target box’s color indicated whether the circle was inside
the target box and ready to be dropped. A counter above
the playing field showed the remaining number of circles
to drag and drop.

Slider task

In the slider task (Fig. 4), participants had to move the handle
of a horizontal slider in such a way that a white square, which
moved along with the slider, fully covered an equal-sized gray
square that successively appeared on different positions on a
horizontal axis. The task had 12 trials. After each trial, the
slider and the white square were reset to the starting position.
A counter above the playing field showed the remaining num-
ber of slides.

Follow-the-circle task

In the follow-the-circle task (Fig. 5), participants had to keep
their mouse cursor inside a circle that underwent a radial
movement for 25 s at a constant velocity. The task is similar
to the Pursuit Rotor Task (Adams, 1952), which is a task to
measure motor coordination. The circle started to move when
the participant moved the mouse cursor inside it. The circle’s
color indicated whether the mouse cursor was inside or out-
side of it. A countdown above the playing field showed the
remaining time.

Measures

Computer mouse usage was captured on the client-side via the
web application. The data was collected in an event-based
manner, that is, a data point was created every time a mouse
event (i.e., positional change or click) occurred. Because of
the client-sided data collection, the maximum sampling fre-
quency of continuous mouse movement differed between par-
ticipants in a range between 20 Hz and 200 Hz (md = 60 Hz).
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Each data point consisted of the name of the mouse event, the
cursor’s x/y position on the screen, a timestamp, and addition-
al task-specific information (e.g., the number of circles clicked
so far in the point-and-click task).

Participants’ stress levels were measured via self-report.
After each mouse task in the baseline stage and application
stage, participants rated how they felt in terms of valence
(from 0 = positive to 4 = negative) and arousal (from 0 =
calm to 4 = excited) on the Self-Assessment-Manikin (SAM,
Bradley & Lang, 1994). Furthermore, at the end of both the
baseline stage and application stage, participants rated their
affective state in more detail on Version B of the German
Multidimensional Mood Questionnaire (Mehrdimensionaler

Befindlichkeitsbogen [MDBF]; Steyer et al., 1997). The ques-
tionnaire consists of twelve items about emotional states (e.g.,
“I'm feeling calm”), which are rated on a 5-point scale (0 = not
at all, 4 = very much) and summarized into the three bipolar
subscales: good mood versus bad mood (Cronbach’s α in the
present study ≥ 0.87), rest versus unrest (Cronbach’s α ≥
0.84), and alertness versus tiredness (Cronbach’s α ≥ .90).
We appended one item asking directly about the stress level
(“I'm feeling stressed”) and one item asking about nostalgia
(“I'm feeling nostalgic”). The nostalgia item was used to test
the specificity of the stress manipulation, as the stress manip-
ulation should affect stress-related affective states but not the
feeling of nostalgia.

Fig. 2 Screenshot of the point-and-click task. Translation of instructions above the black-framed playing field: Click on the circle (in bold); remaining
trials: 17 out of 17

Fig. 3 Screenshot of the drag-and-drop task. Translation of instructions above the black-framed playing field: Drag the circle into the square (in bold);
remaining trials: 12 out of 12
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Procedure

On opening the study’s link, participants first saw an introduc-
tion page with study information. Regarding the study’s pur-
pose, participants were informed that the study was about the
processing of different computerized tasks. Participants had to
give consent before starting the experiment. In the first part of
the experiment, participants had to self-check whether they
were using a computer mouse. If they answered no, they were
re-informed about the participation requirements and asked to
restart the study with a computer mouse. If they answered yes,
they had to indicate whether they were using the computer
mouse with their right or left hand and whether they were
using a built-in keyboard on a laptop. Next in the experiment
was the baseline stage. Here, participants were introduced to

and completed a baseline trial of each mouse task. The task
instructions included written information and a tutorial ver-
sion of the task. The task order was randomized. After each
task, participants rated their current affect in terms of valence
and arousal on the SAM. At the end of the baseline stage,
participants filled out the MDBF plus stress and nostalgia
item. Next was the application stage. It started with an intro-
duction to the counting task, which included written informa-
tion and a tutorial version of the counting task. Afterwards,
participants worked on triples of the counting task, followed
by a mouse task, and concluded by the SAM until they had
completed all tasks. The order of the mouse tasks in the appli-
cation stage was the same as in the baseline stage. At the end
of the application stage, participants filled out the MDBF plus
the stress and nostalgia item again. The study ended with a
debriefing about the study purpose and stress manipulation.
Participants were also shown their accumulated answer of all
counting tasks in comparison to the accumulated solution of
all counting tasks (see Fig. 6 for a flowchart of the
experiment).

Mouse data preprocessing

The preparation of the mouse data for analysis included
multiple processing steps per mouse task (see code for
detailed information): (1) We selected all data points for
the respective task. (2) We removed artifacts from the task
data, which were consecutive mouse movement data points
with either the same timestamp or identical x- and y-coor-
dinates. (3) We visually inspected the data for potential
tracking difficulties. (4) We removed participants from
the task if they showed signs of tracking difficulties or if
their task duration was more than three times greater than

Fig. 4 Screenshot of the slider task. Translation of instructions above the black-framed playing field: Drag the white square onto the gray square (in
bold); remaining trials: 12 out of 12

Fig. 5 Screenshot of the follow-the-circle task. Translation of instruc-
tions: Follow the circle with the mouse cursor (in bold); Task starts as
soon as the mouse cursor moves inside the circle and ends after: 25 s
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the median task duration. (5) We linearly interpolated the
mouse movement data into equally long intervals of 15 ms.
(6) We computed a range of mouse usage features. The
features were selected to adequately represent mouse usage
behavior during each task and can be divided into 8 tem-
poral features, 5 spatial features, and 4 task-specific fea-
tures (Table 1 for an overview of features).

Results

First, we tested the success of the stress manipulation.
Next, we used two statistical approaches to explore the
relationship between stress and mouse usage: (1)
frequentist analysis to compare the mouse usage features
between the conditions individually and (2) machine learn-
ing to test globally whether there is a systematic pattern in
mouse usage related to stress.

Manipulation check

We tested the success of the stress manipulation, both as an
overall difference between the high-stress and low-stress con-
dition on the subscales of the MDBF and the perceived stress
and nostalgia item, as well as the SAM difference between the
high-stress and low-stress condition in each mouse task. For
each dependent variable, we conducted a mixed analysis of
variance (ANOVA) with Condition (high-stress vs. low-
stress) as the between-subjects factor and Stage (baseline stage
vs. application stage) as the within-subjects factor. The anal-
yses were carried out using the pingouin package in Python
(Version 0.3.3; Vallat, 2018).

As regards the difference between the conditions, we found
significant interaction effects between Condition and Stage on
the goodmood versus bad moodMDBF subscale, F(1, 992) =
12.28, p < .001, η2part = 0.012, the rest versus unrest subscale,
F(1, 992) = 13.35, p < .001, η2part = 0.013, the alertness versus
tiredness subscale, F(1, 992) = 6.20, p = .013, η2part = 0.006,

Fig. 6 Flowchart of the experimental procedure
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Table 1 Description of mouse usage features

Feature name Feature description Calculated for mouse task

Temporal features

Task time Time difference between the last and first data point on the task page in seconds point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Working time Time difference between the last data point on the task page and the first data
point when participants started working on the task in seconds
(e.g., the click on the first circle in the point-and-click task)

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Average mouse speed Average speed of the mouse cursor during the task.
Mean of ΔEuclidean distance/Δtime between consecutive mouse movement
data points in pixels per second

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Standard deviation of
mouse speed

Standard deviation of mouse cursor speed during the task.
Std. ofΔEuclidean distance/Δtime between consecutive mousemovement data
points in pixels per second

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Average positive mouse
acceleration

Average positive acceleration of the mouse cursor during the task.
Mean of Δ+speed/Δtime between consecutive mouse speed data points in
pixels per s2

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Standard deviation of
positive mouse
acceleration

Standard deviation of positive acceleration of the mouse cursor during the task.
Std of Δ+speed/Δtime between consecutive mouse speed data points in pixels
per s2

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Average negative mouse
acceleration

Average negative acceleration of the mouse cursor during the task.
Mean of Δ-speed/Δtime between consecutive mouse speed data points in
pixels per s2

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Standard deviation of
negative mouse
acceleration

Standard deviation of negative acceleration of the mouse cursor during the task.
Std of Δ-speed/Δtime between consecutive mouse speed data points in pixels
per s2

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Spatial features

Total mouse distance Total mouse distance traveled during the task. Sum of Euclidean distances
between consecutive mouse movement data points in pixels

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Average mouse angle Average angle of the mouse movement during the task.
Mean of angles between consecutive mouse movement vectors
(three consecutive mouse movement data points) in degrees

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Standard deviation of
mouse angle

Standard deviation of angles of the mouse movement during the task.
Std of angles between consecutive mouse movement vectors
(three consecutive mouse movement data points) in degrees

point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Changes in x-direction Number of directional changes in the x-direction (horizontal movement) point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Changes in y-direction Number of directional changes in the y-direction (vertical movement) point-and-click task, drag-and-drop
task, slider task, follow-the-circle
task

Task-specific features

Total deviation from ideal
line

Total deviation in the movement from an ideal line representing the straight
connection between start and end positions of a trial.
Sum of the deviations from an ideal line of every movement data point

point-and-click task, drag-and-drop task

Mean deviation from ideal
line

Average deviation in the movement from an ideal line representing the straight
connection between start and end positions of a trial.
Mean of deviations from an ideal line of every movement data point

point-and-click task, drag-and-drop task

Standard deviation of
deviation from ideal line

Standard deviation of the deviation of the movement from an ideal line
representing the straight connection between start and end positions of a trial.
Std of deviations from an ideal line of every movement data point

point-and-click task, drag-and-drop task

In circle ratio Ratio of the time the mouse cursor was inside the task circle in the
follow-the-circle task to the time the mouse cursor was outside of the task
circle

follow-the-circle task
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and for perceived stress, F(1, 992) = 15.22, p < .001, η2part =
0.015, but not on nostalgia, F(1, 992) = 1.17, p = .279, η2part =
0.001. Descriptively, the changes in scores are in line with the
aim of the stress manipulation. In the high-stress condition,
there is a stronger increase in bad mood (Δhigh-stress = −0.14,
Δlow-stress = −0.04), unrest (Δhigh-stress = −0.26, Δlow-stress =
−0.13), and stress (Δhigh-stress = 0.33, Δlow-stress = 0.13) from
the baseline stage to the application stage as compared to the
low-stress condition. As regards alertness versus tiredness, in
the high-stress condition, participants reported feeling more
tired in the application stage as compared to the baseline stage
(Δhigh-stress = −0.05), while in the low-stress condition, partic-
ipants reported feeling more awake in the application stage
(Δlow-stress = 0.03). Post hoc comparisons revealed no signif-
icant between-group differences for any variable in the base-
line stage, but in the application stage, participants in the high-
stress condition felt worse than those in the low-stress condi-
tion (M = 2.90, SD = 0.87 as compared toM = 3.01, SD = 0.84,
p = .040, Hedges’ g = 0.13), more unrest (M = 2.61, SD = 0.92
as compared toM = 2.76, SD = 0.90, p = .015, g = 0.16), and
more stressed (M = 1.03, SD = 1.07 as compared toM = 0.89,
SD = 1.04, p = .031, g = −0.14). There was no significant
difference on the alertness versus tiredness subscale, p =
.071. However, as both conditions required participants to stay
focused, we expected a smaller difference as compared to the
other ratings. There was also a main effect of Stage on all
variables (all p ≤ .001, 0.103 ≥ η2part ≥ 0.034) except for the
alertness versus tiredness scale, indicating that the perceived
stress level was higher in the application stage than in the
baseline stage.

On the task level, there were significant Condition x Stage
interaction effects on arousal and valence in all tasks (all p ≤
.03, 0.015 ≥ η2part ≥ 0.005) except for valence in the follow-
the-circle task, F(1, 992) = 0.03, p =.873, η2part = 0.00.
Descriptively, there was a greater increase in arousal and neg-
ative valence from the baseline stage to the application stage
in the high-stress condition as compared to the low-stress con-
dition. Post hoc comparisons of the variables with significant
interaction effects revealed no significant between-group dif-
ferences for any variable in the baseline stage, but in the ap-
plication stage, participants in the high-stress condition report-
ed a higher arousal and a more negative valence as compared
to participants in the low-stress condition (all p ≤ .03, 0.206 ≥
g ≥ 0.131). Again, there was a main effect of Stage on all
variables (all p < .001, 0.107 ≥ η2part ≥ 0.041) except valence
in the follow-the-circle task, indicating that participants felt
more aroused and more negative valence after the mouse tasks
in the application stage as compared to the baseline stage.

The results support the success of the stress manipulation.
The effect sizes were small, but consistent across the measures
and time points, indicating that participants felt more stressed
during the mouse tasks in the high-stress condition as com-
pared to the low-stress condition.

Frequentist analysis of the effects of stress on
individual mouse features

We used the samemixed ANOVA analysis to test whether the
mouse usage features in each task differed between the con-
ditions. To account for the multiple tests in each task, we
applied Bonferroni correction to the alpha level of 5%.
However, instead of focusing on significance alone, we
looked for noticeable mouse features or patterns of interest
emerging in a singlemouse task or across several mouse tasks.

We tested 16 mouse usage features in the point-and-click
task (Bonferroni-corrected α = .0031). There were no signif-
icant Condition × Stage interaction effects when considering
the corrected alpha levels (as in the other sections). Ignoring
alpha correction, there were 4 interaction effects at p < .05:
working time, average speed, average positive acceleration,
average negative acceleration. Descriptively, there was a larg-
er decrease in working time from the baseline stage to the
application stage in the high-stress condition as compared to
the low stress condition (Δhigh-stress = −0.51 s, Δlow-stress =
−0.23 s), a larger increase in speed (Δhigh-stress = 13.24
pixels/s, Δlow-stress = 8.14 pixels/s), a larger increase in posi-
tive acceleration (Δhigh-stress = 0.35 pixels/s2,Δlow-stress = 0.20
pixels/s2), and a larger increase in negative acceleration
(Δhigh-stress = −0.31 pixels/s2, Δlow-stress = −0.18 pixels/s2).
Post hoc comparisons of those variables revealed no signifi-
cant between-group differences for any variable in either the
baseline or application stage.

We tested 16 mouse usage features in the drag-and-drop
task (Bonferroni-corrected α = .0031). There were no signif-
icant Condition × Stage interaction effects when considering
the corrected alpha levels. Ignoring alpha correction, there
were four interaction effects at p < .05: average speed, stan-
dard deviation in speed, average positive acceleration, and
average negative acceleration. Descriptively, there is a larger
increase in the average speed from the baseline stage to the
application stage in the high-stress condition as compared to
the low stress condition (Δhigh-stress = 28.91 pixels/s,Δlow-stress

= 21.00 pixels/s), a larger increase in standard deviation in
speed (Δhigh-stress = 27.18 pixels/s, Δlow-stress = 14.40 pixels/
s), a larger increase in positive acceleration (Δhigh-stress = 0.58
pixels/s2, Δlow-stress = 0.37 pixels/s2), and a larger increase in
negative acceleration (Δhigh-stress = −0.49 pixels/s2, Δlow-stress

= −0.31 pixels/s2). Post hoc comparisons of those variables
revealed no significant between-group difference in the base-
line stage. There was one significant between-group differ-
ence for the average speed in the application stage (Mhigh-stress

= 457.46 pixels/s, SD
high-stress

= 83.69 as compared toMlow-stress

= 444.86, SDlow-stress = 82.40, p = .02, g = −0.15).
We tested 13 mouse features in the slider task (Bonferroni-

corrected α = .0038). There was one significant Condition ×
Stage interaction effect for the average angle when consider-
ing the corrected alpha levels, F(1, 983) = 8.634, p = .0034,
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η2part = 0.009. Descriptively, there was a greater increase in
the angle from the baseline stage to the application stage in the
high-stress condition as compared to the low-stress condition
(Δhigh-stress = 0.20°, Δlow-stress = 0.02°). Post hoc comparison
revealed no significant between-group difference for the aver-
age angle neither in the baseline stage nor in the application
stage. Ignoring alpha correction, there were an additional three
interaction effects at p < .05: average speed, average positive
acceleration, and average negative acceleration. Descriptively,
there was a larger increase in speed from the baseline stage to
the application stage in the high-stress condition as compared
to the low stress condition (Δhigh-stress = 23.87 pixels/s, Δlow-

stress = 15.84 pixels/s), a larger increase in positive acceleration
(Δhigh-stress = 0.41 pixels/s2,Δlow-stress = 0.25 pixels/s2), and a
larger increase in negative acceleration (Δhigh-stress = −0.36
pixels/s2, Δlow-stress = −0.21 pixels/s2). Post hoc comparisons
of those variables revealed no significant between-group dif-
ferences for any variable in either the baseline or application
stage.

We tested 14 mouse features in the follow-the-circle task
(Bonferroni-corrected α = .0036). There were no significant
Condition × Stage interaction effects when considering the
corrected alpha levels, and no interaction effects at when ig-
noring alpha correction.

Overall, the results do not converge into a clear picture
about the effect of stress on mouse usage. Out of the 59 mixed
ANOVAs on all variables in all tasks, only the Condition ×
Stage interaction effect of the average angle in the slider task
remained significant after Bonferroni correction. When ignor-
ing Bonferroni correction, there was a pattern of significant
interaction effects on average speed as well as average posi-
tive and negative acceleration in the point-and-click task,
drag-and-drop task, and slider task, hinting that stress in-
creases mouse speed and acceleration. There was also a main
effect of Stage for most mouse features in all mouse tasks,
indicating a practice effect from the first to the second time a
mouse task was performed.

Machine learning analysis

The principle of supervised machine learning is to use training
data to learn a function (or machine learning model) that best
maps inputs (e.g., mouse usage features) to outputs (e.g., the
stress condition) and then evaluate the goodness of the model
on an independent test dataset (James et al., 2013). Note that
there are potentially an infinite number of models that can be
fitted to the data, and there exists no model that works best for
every problem (Wolpert & Macready, 1997). Therefore, the
machine approach tests whether a specific model or a specific
set of models is better able to map mouse usage to stress than a
baseline/null model. A positive test indicates that a systematic
relationship between stress and mouse usage may exist, but a
negative test does not allow the reverse conclusion, that there

exists no systematic relationship between stress and mouse
usage, as there could be untested models for which the rela-
tionship shows up.

Prediction of condition

In the first step of the machine learning analysis, we tried to
predict Condition (high-stress versus low-stress) for each
mouse task using the mouse usage features as the model input.
Prediction performance was assessed with five-fold cross val-
idation and results in the performance evaluation criterion
relative number of correct condition predictions (i.e., accura-
cy). To test the significance of the model’s classification per-
formance, it was compared to a distribution of 500 model
performance tests on permutated condition labels
(permutation test; Ojala & Garriga, 2010). If the model with
the true condition labels had a higher accuracy score than the
models with the permutated condition labels at least 475 times
(p < .05), we considered it significantly better than random.
All model input features were standardized using a robust
standard scaler as implemented in the sklearn machine learn-
ing package in Python (Version 0.20.1; Pedregosa et al.,
2011).

Given the infinite number of possible models, we
employed the following strategy to come up with a specific
set of models, which we deemed adequate to handle the data
and which have been used in similar studies (cf. Can et al.,
2019; Yamauchi & Xiao, 2018): (1) We used three common
algorithms: logistic regression (LogReg), support vector ma-
chine classification (SVC), and random forest classification
(RFC). Following the rationale of conservative hypothesis
testing (Yamauchi & Xiao, 2018), we used the default model
hyper-parameters as provided by the sklearn package
(Version 0.20.1; Pedregosa et al., 2011) and did not perform
hyper-parameter tuning. LogReg has a LIBLINEAR solver, a
L2 regularization penalty, and an inverse regularization
strength of C = 1.0. SVC has a radial basis kernel function,
a gamma of 1/(the number of features × the variance of the
flattened input feature matrix), and the inverse regularization
strength is C = 1.0. RFC uses 50 trees and has no maximum
tree depth (see code). (2) The baseline stage data (i.e., baseline
data) allowed us to consider individual differences in mouse
usage. To do so, we calculated the difference scores between
the mouse features in the application stage and baseline stage
and used said difference scores as the model input features. In
an alternative approach, we ignored the baseline data and used
the mouse features of the application stage as the model input
features instead of the difference scores. The combination of
all these options resulted in six classification models (3 algo-
rithms × 2 baseline inclusion approaches) per mouse task.
Note that conducting individual permutation significance tests
with each model might capitalize on chance. Bonferroni cor-
rection decreased the critical p value of the permutation test to
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0.05/6 = .0083, meaning that the model with the true condition
labels must outperform the models with the permutated con-
dition labels at least 496 out of 500 times. Again, instead of
looking on significance alone, we looked for noticeable pat-
terns of interest emerging in a single mouse task and across
several mouse tasks (Table 2).

In the point-and-click task, no model significantly predict-
ed the stress condition better than random for both, the
Bonferroni-corrected critical p value and the uncorrected crit-
ical p value of .05.

In the drag-and-drop task, no model significantly
outperformed the Bonferroni-corrected critical p value of
the permutation test. Ignoring Bonferroni correction, there
was one model with a significant prediction performance:
the SVC when ignoring the baseline (54% accuracy, p =
.04).

In the slider task, two models significantly outperformed
the Bonferroni-corrected critical p value of the permutation
test: the LogReg (56% accuracy, p = .002) and the SVC
(59% accuracy, p = .002) when considering the baseline.
Ignoring Bonferroni correction, there were two additional
models with significant prediction performance: the LogReg
when ignoring the baseline (54% accuracy, p = .04) as well as
the RFC when considering the baseline (53% accuracy, p =
.05).

In the follow-the-circle task, no model significantly pre-
dicted the stress condition better than random either with
Bonferroni-corrected critical p value or with an uncorrected
critical p value of .05.

In sum, the results of the condition classification do not
converge to a clear picture about an effect of stress on mouse
usage. Out of 24 prediction classifications, two remained sig-
nificant after correcting for multiple testing. Just as in the
frequentist analysis, the significant results emerged in the slid-
er task. When ignoring Bonferroni correction, 5 out of the 24
predictions were significant (i.e., four in the slider task and

one in the drag-and-drop task). Overall, all accuracy scores
were close to random guessing with 59% accuracy as the best
result.

Predicting valence and arousal rating

Our experimental design assumed the existence of two groups
with dichotomous stress levels (high versus low). In reality,
stress is continuous, and the subjective nature of stress causes
the stress manipulation to have different effects on participants
independent of experimental condition. To account for this,
we additionally collapsed the group design and performed
correlative analyses independent of experimental conditions,
to analyze the relationship between stress and mouse usage on
an individual level. Specifically, we used the mouse usage
data to predict the valence and arousal ratings of each task
(regression analysis). Contrary to the condition classification,
this correlative approach does not allow for a causal interpre-
tation of the stress manipulation on mouse usage.

The regression analysis followed similar steps as the con-
dition classification. We used five-fold cross validation to
evaluate our model’s performance. The performance evalua-
tion criterion of the regression model was the coefficient of
determination (R2). A null model, which always predicts the
mean value of the outcome variable (arousal or valence rat-
ing), disregarding the input features (mouse usage features),
has a R2 score of 0; thus a correlation between valence or
arousal and mouse usage is represented by models with R2 >
0. The significance of a regression model with R2 > 0 was
tested by comparing it to a distribution of 500 model perfor-
mance tests on permutated valence/arousal scores. If the mod-
el with the true valence/arousal ratings had a higher R2 than
the models with permutated valence/arousal ratings for at least
475 times (p < .05), we considered it better than random. All
model input features were standardized using sklearn’s robust
standard scaler (Version 0.20.1; Pedregosa et al., 2011).

Table 2 Results of the condition prediction (machine learning classification)

Algorithm Point-and-click task Drag-and-drop task Slider task Follow-the-circle task

Accuracy p Accuracy p Accuracy p Accuracy p

Application stage features (without baseline)

LogReg 52 0.198 51 0.501 54 0.034* 50 0.5808

SVC 51 0.411 54 0.044* 53 0.122 48 0.9441

RFC 48 0.880 53 0.072 53 0.074 46 0.99

Difference score features (with baseline)

LogReg 53 0.090 53 0.116 56 0.002** 50 0.7106

SVC 54 0.060 52 0.196 59 0.002** 51 0.8124

RFC 51 0.222 51 0.287 53 0.046* 50 0.4671

Note. The accuracy columns represent the mean five-fold-cross validation score. The p columns represent the p values of the permutation tests. LogReg:
logistic regression; SVC: support vector machine classification; RFC: random forest classification. *p < .05, **p < .0083 (Bonferroni-corrected p value)
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Again, we tested a set of different models: (1) We used
three common algorithms with default hyper-parameters as
provided by the sklearn package (Version 0.20.1; Pedregosa
et al., 2011) and did not perform hyper-parameter tuning:
linear regression (LinReg), support vector machine regression
(SVR), and random forest regression (RFR). LinReg is an
ordinary least-squares regression, and the model included an
intercept. SVR has a radial basis kernel function, a gamma of
1/(the number of features × the variance of the flattened input
feature matrix), and the inverse regularization strength is C =
1.0. RFR has 50 trees and there is no set maximum tree depth
(see code). (2) We controlled for the baseline by using the
difference scores of the mouse features between the applica-
tion stage and baseline stage as the model input and the dif-
ference scores of the valence and arousal ratings as the depen-
dent variable (versus ignoring the baseline and using the
mouse usage features as well as the valence/arousal ratings
of the application stage). Overall, the combination of all op-
tions resulted in six regression models (3 algorithms × 2 base-
line inclusion approaches) per mouse task, per dependent var-
iable (valence, arousal). Bonferroni-corrected p values of the
permutation tests were 0.05/6 = .0083.

No model achieved a R2 considerably larger than 0, omit-
ting the need for permutation tests (Table 3). To this effect, we
found no correlation between mouse usage and self-reported
arousal or valence.

Alternative machine learning approaches

To avoid the potential shortcoming of having selected a spe-
cific set of mouse usage features from an infinite feature space
accompanied by possible information loss—as done in the
previous approach—we implemented an additional explor-
ative machine learning approach, which used the raw mouse
usage data as the model input: We created images of the
mouse usage during each task and used them as the model
input data to predict the stress condition (classification) and
the self-reported valence/arousal scores (regression). The im-
ages were scatter plots of the mouse data point’s x- and y-
coordinates with the x- and y-axis of the plot corresponding
to the participant’s screen. Here, we used the original mouse
usage data points instead of the interpolated data points. To
add temporal information to the plots, the sequence of the
mouse movement data was visualized by assigning each con-
secutive data point a unique color, which matched a
predefined color pattern from purple (first data point) to yel-
low (last data point). The mapping of data point to color was
relative to the total number of data points, meaning that an
increase in data points increased the intermediate color steps
between purple and yellow, but the first data point always had
the same purple color and the last data point always had the
same yellow color. To separate mouse click data points from

mouse movement data points, mouse click data points are
black (Fig. 7).

The algorithm to analyze the image data was a
convolutional neural network (resnet 34, as implemented by
the fastai package [version 1.0.59, 2019] in Python). We con-
trolled for baseline by merging the images of the mouse usage
during the application stage and baseline stage into a single
image by stacking them onto each other. In an alternative
approach, we only used the application stage images as the
model input. This resulted in two models (1 algorithm × 2
baseline inclusion approaches) per mouse task per prediction
(condition classification, regression on valence, regression on
arousal). Because the image analysis approach was explorato-
ry and computationally expensive, we tested the prediction
performance with a single randomly drawn train (80% of the
data)-test (20% of the data) split instead of five-fold cross-
validation and did not perform permutation tests.

The results of the machine learning approach using the
mouse usage images are presented in Table 4. There are no
noticeable differences to the results of the machine-learning
approach using the selected set of mouse usage features. The
best classification accuracy was 58% in the slider task when
ignoring the baseline. In the regression, we found no correla-
tion betweenmouse usage and self-reported arousal or valence
(all R2 < 0).

Because all results are fluctuating around the random guess
mark, it is hard to judge the feasibility of the image analysis
approach. We therefore additionally tested whether the ap-
proach is able to correctly classify between two mouse tasks
(point-and-click task versus drag-and-drop task) as they
should be separable. The accuracy of the image classification
approach was 100%. We likewise tested the accuracy of the
mouse features approach (here, we exemplarily used a support
vector machine classifier and ignored the baseline). The accu-
racy was 100%, as well.

Discussion

The computer mouse is a ubiquitous sensor that captures dy-
namic real-time data about human behavior at millisecond
precision (Hehman et al., 2015). These qualities have been
recognized by a growing number of researchers in cognitive
science that utilize computer mouse tracking as researchmeth-
odology to better uncover the processes of how we think
(Freeman, 2018; Stillman et al., 2018). The present paper
combined mouse tracking and affective computing research
to investigate whether the computer mouse would prove an
effective research methodology to better uncover the process-
es of how we feel. Specifically, we aimed to explore the rela-
tionship between stress and mouse usage during goal-directed
tasks. To do so, we conducted an online experiment in which
participants worked on four different mouse usage tasks (a
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point-and-click task, drag-and-drop task, slider task, and
follow-the-circle task) in either a high- or low-stress condition.
We used a wide range of statistical approaches to find patterns
in the mouse usage data that are linked to stress.

While the manipulation check revealed that participants in
the high-stress condition reported a small but consistently
higher stress level on different self-report measures compared
to participants in the low-stress condition, we found no clear
relationship between stress and mouse usage behavior. There
was some very tentative statistically significant evidence as to
an effect of stress on mouse usage in the slider task with both
frequentist and machine learning analysis. Additionally, there
was a tentative pattern of a stress-related increase in partici-
pant’s cursor speed and acceleration for the point-and-click
task, the drag-and-drop task and the slider task. However, all
effect sizes were marginally small (all η2part < .01, which is the
cut-off for a small effect according to Cohen, 1988). All con-
dition classifications were close to random guessing (a maxi-
mum accuracy of 59% is not reliable for stress detection), and
there was no correlative relationship between mouse usage
and participants valence and arousal ratings in any mouse
task. With a sample of N = 994, the probability of missing a

substantial effect of stress on mouse usage was low, although
the small observed effect of the stress manipulation potentially
set an upper limit on the expected effect of stress on mouse
usage. Considering the effect on perceived stress (η2part =
.015) as the expected effect size, the power to find such an
effect of stress on mouse usage was .82 for the Bonferroni-
corrected alpha level (.0031) and .97 for the uncorrected alpha
level (calculated with G*Power; version 3.1.9.7.; Faul et al.,
2007). With the machine learning analyses, we did not ob-
serve major fluctuations between the prediction results of dif-
ferent models or within different folds of the five-fold cross
validation, indicating that the sample was large enough for the
prediction models to be stable and therefore reliable.

In sum, the results provide little evidence for a meaningful
relationship between stress and mouse usage. Nonetheless, it
is important to note that the exploratory nature of the data
analysis does not rule out the existence of a systematic rela-
tionship between mouse usage and stress, which might be
harder to find than we were able to in the present study with
the given dataset, the given stress manipulation, and the given
data analytical approaches.

Placing the results in the context of the existing
literature

The present study’s findings align with the hitherto mixed
evidence on the relationship between mouse usage and af-
fective states of previous studies. Although individually,
most studies drew a more positive conclusion from their
results, collectively, the high number of apparently aban-
doned pilot projects paired with heterogeneous and hard-to-
integrate empirical evidence strengthens our finding of a
lack of a systematic relationship between mouse usage
and stress. We argue that a similar conclusion can also be
drawn from the—to our knowledge—most comprehensive
study published in the research area so far (Yamauchi &

Table 3 Results of the valence and arousal predictions (machine learning regression)

Algorithm Point-and-click task Drag-and-drop task Slider task Follow-the-circle task

Valence R2

score
Arousal R2

score
Valence R2

score
Arousal R2

score
Valence R2

score
Arousal R2

score
Valence R2

score
Arousal R2

score

Application stage mouse features and valence/arousal ratings (without baseline)

LinReg −0.01 −0.04 −0.00 −0.03 −0.01 0.00 −0.00 −0.03
SVR −0.12 −0.08 −0.03 −0.08 −0.07 −0.05 −0.10 −0.05
RFR −0.05 −0.06 −0.05 −0.05 −0.04 −0.08 −0.09 −0.07
Difference score mouse features and valence/arousal ratings (with baseline)

LinReg −0.01 −0.03 −0.00 −0.01 0.00 −0.02 −0.02 −0.02
SVR −0.08 −0.06 −0.06 −0.06 −0.10 −0.06 −0.09 −0.04
RFR −0.07 −0.02 −0.06 −0.02 −0.05 −0.04 −0.02 −0.05

Note. TheR2 score columns represent themean five-fold-cross validation R2 scores. LinReg: linear regression; SVR: support vector machine regression;
RFR: random forest regression

Fig. 7 Visualization of the mouse usage behavior of a sample participant
in the drag-and-drop task. The rectangular frame represents the computer
screen. The dots represent single mouse data points. Mouse movement
data points are chronologically ordered from purple to yellow. Mouse
clicks are represented by black dots
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Xiao, 2018). The authors interpret their results as promising
and in favor of an effect of affective states on mouse usage,
but they found a mix of both significant and non-significant
correlations between mouse usage and specific affective
states for specific samples (men or women) in specific ex-
perimental settings. In Study 1 (no emotion manipulation),
they found correlations between mouse usage and anxiety
in men and women. In Study 2 (music-based emotional
manipulation), they found correlations with positive emo-
tions (positive affect, joviality, self-assurance, attentive-
ness), but not with negative emotions (negative affect, sad-
ness, fear, hostility) in men and women. In Study 3 (film-
based emotion manipulation), they found correlations be-
tween mouse usage and positive affect and attentiveness in
women and correlations between mouse usage and self-
assurance in men (participants rated the same emotions as
in Study 2). In Study 4 (picture-based emotion manipula-
tion), they found correlations between mouse usage and
self-rated valence and arousal in men and women. The
overall pattern in the results is not interpretable in a straight-
forward way. Moreover, the authors did not adjust the p-
values of their models’ significant tests to the fact that they
used different algorithms, iterated over several dependent
variables, and split the sample into subsamples. As regards
the ecological validity of their results, the study included
only laboratory experiments and a sample predominantly
comprising students, possibly overestimating a general
effect of affective states on mouse usage when taking
hardware variance and interpersonal variance into
account. Considering the studies about the relationship
between mouse usage and stress, Freihaut and Göritz
(2021) similarly found no systematic effect of stress on
mouse usage. Sun et al. (2014) showed mixed evidence
for an effect of stress on mouse usage. The results of
Kowatsch et al. (2017a) more consistently pointed towards
an effect of stress on mouse usage, but were based on a very
small sample of N = 19, and the same authors (2017b) found

no clear correlation between mouse speed and self-rated
valence and arousal in their field study.

Taken together, the results of the present study and the
ambiguous empirical state-of-the-art favor a more pessimistic
or at least cautious view of a systematic effect of affective
states on mouse usage than previous research might suggest.
More importantly, the combined results highlight that the re-
search area lacks a theoretical foundation and faces tremen-
dous methodological challenges. On the one hand, both as-
pects hinder the formulation of research hypotheses and com-
plicate the integration of different results, while on the other
hand, they promote finding and reporting unreliable out-
comes, as the data analyses approaches are not standardized
and exploratory.

Using mouse tracking for stress measurement and
research

Affective states, stress, and sensorimotor behavior are com-
plex and dynamic phenomena by themselves (Gallivan et al.,
2018; McEwen, 2000; Russell, 2003). Accordingly, their in-
terplay is unlikely to be less complex. In the introduction, we
presented evidence from different research areas about effects
of stress on cognitive and biomechanical processes potentially
involved in mouse usage, but the results of the present study
demonstrate that putting the empirical and theoretical pieces
together is impossible for the time being.

From a stress measurement perspective, the results are so-
bering. Even if the sparse evidence in favor of an effect of
stress on mouse usage holds true in further research, the ef-
fects are likely too small to reliably infer stress from cross-
situational mouse usage. A theoretical interpretation of the
empirical evidence suggests that mouse usage behavior repre-
sents the end result of complex and context specific processes,
which can hardly be translated into a generalized stress marker
similar to other markers that target more automated and uni-
form stress-related processes such as an increase in heart rate

Table 4 Results of the condition (classification), valence, and arousal predictions (regression) using the mouse usage images as the model input

Included only the data of the application stage (without baseline) Included the data of the application stage and baseline stage
(with baseline)

Mouse task Condition prediction
(Accuracy)

Arousal prediction
(R2 score)

Valence prediction
(R2 score)

Condition prediction
(Accuracy)

Arousal prediction
(R2 score)

Valence prediction
(R2 score)

Point-and-click
task

53 −1.27 −4.23 44 −1.55 −4.41

Drag-and-drop task 54 −1.10 −5.22 56 −1.24 −2.64
Slider task 58 −1.56 −4.66 50 −2.63 −2.93
Follow-the-circle

task
49 −1.22 −2.74 55 −2.10 −2.14

Note. The algorithmwas a convolutional neural network (resnet 34). Themodel that was trained with 80% of the sample drawn at random, and the results
represent the prediction performance on the remaining 20% of the sample

2295Behav Res (2021) 53:2281–2301



resulting from the activation of the sympathetic nervous sys-
tem (Pruessner et al., 2010). The present study and most other
studies in the research area, however, neglected the major
advantage of the computer mouse as a continuous and indi-
vidualized data collection tool. Future research on stress mea-
surement via the computer mouse should therefore focus on
such an individualized and long-term approach. It might be
possible to carve out mouse usage patterns that relate to stress
or other affective states from data captured from the same
individual over multiple times and tasks. To our best
knowledge, such research hardly exists. Kowatsch et al.
(2017b) collected mouse usage data from office workers over
multiple weeks, but only published preliminary analyses that
showed mixed results. Khan et al. (2013) collected longitudi-
nal data from everyday computer interactions, including
mouse usage events, and found correlations between comput-
er interactions and self-rated valence and arousal at an
individual level. Finally, Pimenta et al. (2016) capturedmouse
usage during classwork in a computer laboratory and found
that participants with higher fatigue levels showed more var-
iance in their mouse usage. They were able to predict self-
rated fatigue levels from the mouse data of participants in a
test set at 81% accuracy. More generally, putting the focus on
long-term tracking of individualized stress levels has potential
for a better understanding of the dynamics of stress and the
relationship between stress and the development of affective
disorders such as chronic stress and burnout (Adjerid &
Kelley, 2018).

From a theory-building perspective, the results highlight a
need for systematic research on the interplay between stress
and sensorimotor behavior. To this effect, mouse tracking
might be a promising research methodology (similar to the
use of mouse tracking in cognitive science). We exemplarily
propose potential topics of interest which emerged from the-
oretical reflections about the meager results of the study at
hand:

Our definition of stress postulates that a (dis-)stress reac-
tion requires a perceived and threatening discrepancy between
situational demands and coping resources (Zapf & Semmer,
2004). This definition implicates the existence of a threshold
beyond which the individual feels distressed. Common mea-
surement approaches of stress (such as the questionnaires used
in the present study), however, do not incorporate such a
threshold. An increase in physiological arousal paired with
an increase in negative valence is commonly interpreted as
an increase in the stress level independent of their absolute
values. Given the existence of a threshold, mouse usage might
not be linearly related to arousal and valence, but might only
change when the threshold is surpassed. Moreover, this sur-
passing of the threshold might not be amenable to self-insight
(yet), but merely register in physiological or other non-
conscious parameters, whereas becoming aware of one’s
own feeling of distress might require surpassing another

threshold or the presence of additional external or internal
characteristics. On a similar note, different cognitive, emo-
tional, physiological and behavioral processes related to the
stress reaction might differ in sensitivity towards situational
demands and therefore have measurable onsets at different
intensity levels. This hypothesis is backed by research show-
ing that self-report and physiological stress markers do not
necessarily correlate with each other (Liapis et al., 2015;
Stalder et al., 2017). Future research could therefore try to
simultaneously measure and compare different stress mea-
surement approaches (e.g., self-report, physiological and be-
havioral measures) at varying stress levels and at qualitatively
different sources of stress.

The goal-directed mouse tasks in the present study as in
most other studies were directly or indirectly tied to perfor-
mance (e.g., clicking on targets as fast as possible). According
to Yerkes-Dodson law (Yerkes & Dodson, 1908), there is an
inverted quadratic relationship between performance and
arousal, which is backed by research on the effects of stress
on memory performance (Lupien et al., 2007). In terms of
motor performance, van Galen and van Huygevoort (2000)
argue that detrimental effects of stress can be biomechanically
compensated to some degree. Similarly, according to sparse
capacity models, humans are temporarily able to compensate
for a decrease in performance during an increased workload or
stress by resorting on spare resources and an increase in effort
(Casali & Wierwille, 1983; Hockey, 1997; Pimenta et al.,
2016). Likewise, a meta-analysis about the relationship be-
tween stress-related anxiety and sports performance only
showed weak correlations (Craft et al., 2003). Again, this in-
dicates that stress and mouse usage might not be related in a
straightforward manner in mouse performance oriented-tasks
and, more generally, that behavioral stress measures and self-
report or physiological stress measures do not necessarily
share the same response pattern to an increase in the stress
level.

Lastly, the results of the present study raise the question of
how the task affects the relationship between stress and mouse
usage, as there was slight evidence about an effect of stress on
mouse usage in the slider task, but less evidence in the point-
and-click as well as in the drag-and-drop task and no evidence
in the follow-the-circle task. This might indicate that there is
no cross-situational or task-independent direct effect of stress
on mouse usage, but—if any—an effect of stress on task pro-
cessing, which in turn is reflected in mouse usage. To give an
example, Kowatsch et al. (2017a) argued that stress increases
noise in the sensorimotor process, which causes an increase of
stutter or micro-deviations in mouse movements. Such an ef-
fect represents a direct effect of stress on mouse usage, which
should be visible across different tasks. In contrast, Hibbeln
et al. (2017) drew on Attentional Control theory (Eysenck
et al., 2007) and postulated that negative valence causes a shift
in attentional focus from goal orientation to stimulus
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orientation resulting in a different processing of information
during a goal-directed task. Such an effect represents an indi-
rect effect of stress on mouse usage, because stress changes
task execution (e.g., the decision between alternative stimuli),
which is then mirrored in changes in mouse usage.
Furthermore, the relationship between stress and mouse usage
might also depend on the task demands. Neurologically, stress
causes a shift in activation of brain regions responsible for
higher-order cognitive processes in favor of brain regions re-
sponsible for more immediately adaptive and habitual re-
sponses (Arnsten, 2009), that is, the activation of adaptive
processes that prepare to fight-or-flight a threatening situation.
Therefore, simple tasks might be affected differently from
tasks with higher demands on cognitive or motor skills.
Accordingly, the shape of the Yerkes-Dodson curve depends
on the task difficulty and performance in simple tasks and
does not necessarily follow a quadratic function, but can pla-
teau with increasing arousal (Diamond et al., 2007). Future
research should therefore test the effects of varying stress
levels on mouse tasks with varying cognitive and motor de-
mands. As the motor demands during regular computer usage
most likely do not exceed the motor demands of the mouse
tasks in the present study, we suggest to put an emphasis on
the development and testing of mouse tasks with varying cog-
nitive demands. Examples for such tasks are the puzzle-
solving task as used by Hibbeln et al. (2017) or the decision-
making task as used by Yamauchi and Xiao (2017).

Methodological considerations of the study

Although the manipulation check revealed a higher stress lev-
el in the high-stress condition than in the low-stress condition
consistently across different self-report measures, all effect
sizes of the difference in stress were small. As such, the stress
manipulationmight have been successful but too weak to have
had a distinct effect on mouse usage. To circumvent the small
group differences and to accommodate the subjective nature
of stress, we additionally performed correlative analysis be-
tween mouse usage and participants’ self-rated valence and
arousal, which did not reveal any meaningful relationship in
any mouse task.

The present study’s stress manipulation protocol relied on a
hard (versus easy) counting task and a threatening (versus
neutral) framing to induce a high (versus low) stress level
between the conditions. The counting task is a novel task
and therefore not (yet) well established. We developed the
counting task because of a lack of stress manipulation tasks
that fit the needs in our experiment. In contrast to other
established computerized stressor tasks such as the Stroop task
(Stroop, 1935), the counting task is easy to understand and
requires little practice. Moreover, the counting task does not
require mouse usage, which otherwise could have affected the
succeeding mouse tasks, and its difficulty can adjusted by

changing the number of targets and distractors. We decided
against a mental arithmetics task as another typical stress ma-
nipulation task (Dickerson & Kemeny, 2004), which has sim-
ilar characteristics, because counting squares is a more neutral
task than solving mathematical equations and therefore might
have a more homogenous effect across participants. The small
difference between conditions as well as the main effect of the
experimental stage with higher stress levels in the application
stage than in the baseline stage indicates that the counting task
(in addition to the framing) can be used as a new stress ma-
nipulation protocol, but also highlights the need for adjust-
ments to induce more distinct stress levels between the condi-
tions. Potential adjustments to the counting task include
changes of the number of targets and distractors or changes
in the time limit. The task might also profit from including
additional shapes, colors (e.g., counting the blue squares only)
or more complicated instructions such as counting the differ-
ence between blue and green squares to add a mental arith-
metic component. Lastly, it is also possible to dynamize its
difficulty based on individual performance.

The framing was added to the stress manipulation protocol
to include a social evaluative threat. In an online setting, it was
not possible to add a real-time social interaction to the stress
manipulation protocol. We therefore targeted at a more self-
evaluative threat by framing the application stage in the high-
stress condition as an intelligence test. This framing might
have resulted in a weaker stress reaction than a social evalua-
tive situation in which participants have to perform in front of
an audience such as in the Trier Social Stress Test
(Kirschbaum et al., 1993). The Montreal Imaging Stress Test
(Dedovic et al., 2005) includes a fictional performance crite-
rion about the expected and average performance in a mental
arithmetic task to include a social-evaluative threatening com-
ponent, which might be stronger than simply stating that the
task represents a performance test. However, we decided
against the inclusion of a more explicit performance pressure
framing, because some participants who are not able to re-
motely meet the performance criterion might be discouraged
rather than stressed, or theymight realize that the task is make-
believe.

Lastly, the high degree of standardization of the stress ma-
nipulation protocol might have caused the conditions to be too
similar to have achieved a large difference in stress level. We
chose to maximize the comparability of the two stress
conditions and thus internal validity. However, in the
interest of creating unequal stress levels between the
conditions, it might be reasonable for future research to
sacrifice some of the standardization in favor of the intensity
of the stress manipulation. For example, Sun et al. (2014)
chose such an approach and let participants do mindfulness
meditation in the low stress condition versus mental calcula-
tions under time pressure in a social-evaluative situation in the
high stress condition.
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We exhaustively tried to find correlations between mouse
usage in stress in our data using multiple statistical ap-
proaches, which can be considered a strong point of the study.
We showed that these data analytical procedures were unable
to find a systematic relationship between stress and mouse
usage in the data, but it might be possible that other ap-
proaches are able to do so. To the best of our knowledge,
we covered the core approaches used in other studies in this
research area. Feasibility tests (i.e., classifying the point-and-
click versus the drag-and-drop task) showed that the machine
learning models were able to handle the mouse usage data,
thus justifying their use. Moreover, we introduced a novel
image based approach to analyze mouse usage data without
the need to dissect the raw data into features. The approach is
exploratory and its implementation might be improved with
more domain expertise. More generally, transforming the
mouse data into images might encourage others to rethink
how their data can be analyzed in novel ways.

Finally, we consider the experimental design of this study
and its large and heterogeneous sample to be strong points of
this research.

Conclusion

Computer mouse tracking offers a simple, unobtrusive, and
cost-efficient way to gather continuous behavioral data,
which might contain useful information for different fields
of psychological science. The present study tested the fea-
sibility of utilizing computer mouse tracking to measure
people’s individual stress levels. The results do not show
a clear relationship between stress and mouse usage. One
the one hand, this suggests that generalized stress measure-
ment via the computer mouse is likely not feasible. On the
other hand, it highlights the need for theoretical advance-
ments about the interplay between stress and sensorimotor
behavior. In line with the open science movement (Crüwell
et al., 2018), we bring forward the sparse and ambiguous
findings of this study as well as our research materials in
the hopes of fostering a critical discussion and the devel-
opment of new ideas and approaches.
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